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A Lower Bound for the Risk in Estimating the Value

LAWRENCE D. BROWN and ROGER H. FARRELL*

of a Probability Density

This article considers estimation of f(0) of a density function satisfying a Lipshitz condition in a neighborhood of 0. A nonstandard
use of the Cramer-Rao inequality yields numerical lower bounds on the minimax squared error risk of any estimator. These
bounds are then compared with the minimax risk of the asymptotically optimal kernel-type estimator. The asymptotic bounds
obtained (as the sample size n — ) are not quite as good as those in Donoho and Liu (in press a, b), but bounds are presented
here also for finite values of n, and that paper contains no such bounds for this problem. The numerical results reported in
Table 1 show that the asymptotically optimal kernel estimator performs within a factor of 3 of the minimax bound, even for
sample size n = 30. As n increases the relative performance improves to its limiting value, although the convergence is fairly

slow.

KEY WORDS: Cramer-Rao inequality; Density estimation; Kernel estimator.

1. INTRODUCTION
11 Overview

Nonparametric density estimation is one of several re-
lated statistical problems involving nonstandard asymp-
totic theory having rates of convergence other than the
usual order of 1/\V/n. This article examines one very spe-
cific density estimation problem from a new perspective.
Numerical results of a nonasymptotic character are ob-
tained for finite sample sizes. In addition, an asymptotic
result is presented.

The problem under consideration has a special, easily
manageable structure. The methods introduced in this ar-
ticle, however, are clearly applicable to a wide variety of
nonstandard problems. It seems reasonable to conjecture
that the general pattern of numerical results in many of
those problems will be qualitatively similar to that ob-
served here.

Kernel estimators for density estimation problems were
introduced by Rosenblatt (1956) and Parzen (1962). Since
then a variety of other methods have been suggested. Some
of these, such as certain cross-validation techniques, are
nonlinear methods constructed from (linear) kernel esti-
mators (Hall 1983; Stone 1984); others, such as spline
smoothing (Silverman 1984; Wahba 1975), possess differ-
ent motivations.

A number of attempts has been made to examine ab-
solute and relative properties of these various methods.
Of particular note here are two general classes of studies.
One type of study looks at asymptotic rates of convergence
of particular estimators. These can then be compared with
optimal rates as established, for example, in Farrell (1972,
1979). Another type of study compares finite sample prop-
erties of specific estimators. See, for example, Marron
(1987) and Altman (1988).

The approach here is somewhat different. The goal is
to compare the minimax risk of a specific kernel estimator
at reasonable sample sizes with a lower bound derived
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from the Cramer-Rao inequality. This comparison pro-
vides a bound on the improvement in performance pos-
sible through use of other, more sophisticated procedures.
In the case at hand the comparison shows that the optimum
kernel estimator cannot be greatly improved in this min-
imax sense. This is particularly true for moderately large
sample sizes. In the sense that this article looks at a bound
for the actual value of the minimax risk, rather than just
the asymptotic rate of convergence, it is closely related to
Birge (1987a,b). However, his problem, his methods, and,
to some extent, the qualitative pattern of his results differ
from those in our article.

The numerical results are summarized in Table 1. In
brief, even for moderate sample sizes the optimum kernel
estimator usually performs within a factor of 3 of the min-
imax bound. As n — = it performs within a factor of 1.45
= (.69)~". (An even better asymptotic bound is possible.
See the parenthetical comment in the next section.)

1.2 Asymptotic Results

This article considers estimation of f(0) for a density
function f satisfying the following boundedness and Lip-
shitz conditions:

f(x) = a, (1.1)

fo) ~ f(y)’ _,
P

in a specified neighborhood of 0.

Sacks and Strawderman (1982) showed in a closely re-
lated problem that the optimum kernel-type estimator se-
quence is not asymptotically optimum in the appropriate
minimax sense. Their methods also apply to the problem
at hand (Mark Low, personal communication). Thus there
exists another sequence of estimators for which the lim-
iting ratio of maximum risk to that of the kernel estimator
sequence is (slightly) less than 1. The present results show
in spite of this fact that the optimum kernel-type estimator
is not too bad in the asymptotic minimax sense by showing
that in our problem such a ratio can never be less than
.69.
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Table 1. Values of {p*, p,} for Selected Values of a, b, n

a b 30 60 7100 200 500 10° 10¢ 10°  10° 107 10°  10°
3 P N 75 .78 .82 .86 .88 94 97 .98 99 99 .99
.31 .33 .35 .36 .38 44 56 63 .66 68 69 .69
1 H .38 A7 .54 .62 71 .76 .88 94 97 98 99 .99
.21 27 31 37 43 47 .56 .63 .66 .68 .69 .69
L 75 .80 .82 .86 .89 91 .95 97 .98 99 99 99
.29 .32 34 36 .38 39 54 .62 .66 .68 .69 .69
1 1 .59 .65 .69 .75 .80 84 92 96 .98 99 99 99
.33 37 .39 41 44 48 57 .63 .66 68 69 .69
1 .73 .80 .84 .87 .90 .91 .96 98 .99 99 99 99
.25 30 32 .35 37 38 .50 .61 .65 68 69 .69
1 2 7N .75 .78 .82 .86 88 .94 97 .98 99 99 99
31 .33 .35 .36 .38 44 56 .63 .66 68 69 .69

[At the same time as this article was being prepared Liu
(1987), Donoho and Liu (in press a,b), and Donoho, Liu,
and MacGibbon (1990) wrote a series of papers concerning
problems with nonstandard asymptotics. These papers de-
scribe a number of new methods to derive lower bounds
for the asymptotic minimax risk in such problems. Their
best method yields an asymptotic bound that is even better
than the value .69 mentioned here. The best bound comes
from their “‘hardest linear subfamily” method combined
with the tables of Casella and Strawderman (1981). This
yields the better asymptotic bound of .85. However, the
method used to derive this bound is based on asymptotic
normality and does not seem suitable to derive non-
asymptotic bounds like those given in our Table 1.]

1.3 One-Parameter Subfamilies

The Cramer-Rao method to be used here requires that
for each given sample size, n, the problem be reduced to
a suitably chosen one-parameter subproblem, say {fy, :
0 € [-T,, T,]}. The subproblem chosen in Section 2 has
only a mild dependence on » and on the constants a, b in
(1.1). This is convenient, but it is not a logical necessity
for application of the method.

There is a double intuition lying behind the choice of
the family. One motivation is that the family should be
chosen so that for each fixed value of f,(0) — f4(0) the
densities should be as close together as possible in some
vaguely specified sense. The other motivation lies in the
Fisher information itself. That information is locally of the
form I(6) = c|6]¢ + 0(F). The object is to choose the
family subject to (1.1) and to the constraint f,(0) = f,(0)
+ 0 + o(0) so that d will be as large as possible (d > 1)
and then c¢ will be as small as possible. Such a family is
locally least favorable with respect to Fisher information.

These intuitive considerations suggest the choice of a
family that behaves for small |6| like

fox) = fo(0) + 6(1 — blx|/|O)* + 0(6) (1.2)

for x in the specified neighborhood of x = 0. The family
defined in (2.5) has this property. It has been chosen, in
addition, to balance somewhat the competing require-
ments that f,(0) be large and T, be large. The desire to
balance these two requirements as well as the need to
guarantee that f, be a probability density explain the al-
gebraic complexity of (2.4) and (2.5). If only an asymptotic

result were requested, then it would suffice to choose vir-
tually any family satisfying (1.2) and having f4(0) = a —
¢ with ¢ > 0 arbitrarily small.

[At the time this article was written we believed that
this intuition would lead to the best asymptotic bound
possible through use of the ordinary Cramer-Rao in-
equality. However, more recent results in Brown and Low
(1990) for a different nonstandard problem suggest that
this is not the case, although it does not appear that a
different choice of the family would improve the resulting
asymptotic bound by more than a few percent.]

One might contemplate choosing a multidimensional
subfamily and then applying the multiparameter Cramer—
Rao inequality. If an efficient method could be derived
for applying this inequality, then such a procedure could
in principle lead to somewhat improved bounds. The na-
ture of the results here [and, even more, the results in
Donoho and Liu (in press a,b)], however, make it clear
that one can derive surprisingly accurate inequalities
through the use of one-parameter subfamilies.

1.4 Cramer—Rao Inequality

Wald (1951) used the Cramer—Rao inequality via a worst
case estimate of the size of the bias to show that maximum
likelihood estimators were asymptotically minimax. In that
sense the present methods can be considered a refinement
of Wald’s idea. Wald’s problem, however, is of the stan-
dard type in that the asymptotically optimal sequence of
maximum likelihood estimators is asymptotically unbiased
and has a 1/Vn rate of convergence. Hodges and Leh-
mann (1951) then used the Cramer—Rao inequality to prove
minimaxity and admissibility under squared error loss in
the case in which the information is constant. Their method
involves dropping the (f'(0))* term from the inequality
for the risk [see (2.6)] and then directly analyzing the
remaining differential inequality. See also Gajek (1988).
Brown and Gajek (1990) discussed the idea of dropping
this same term, multiplying by a suitably chosen density
function, integrating by parts, and completing the square.
Farrell, in an earlier version of this article, considered
dropping the $%(f) term to obtain a cruder lower bound.
This crude lower bound is easy to compute and proved to
be surprisingly close to the bound currently obtained.

The present method involves rewriting the full inequal-
ity for the squared error risk as an ordinary differential
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inequality. It is then observed that this inequality has a
solution only if the corresponding equality also has a so-
lution. That ordinary differential equality, (2.8), can be
easily solved by standard numerical methods. It contains
a putative value, r, for the minimax risk. The least value
of r for which this equation has a solution on all of § €
[—T,, T,] is a lower bound for the minimax risk.

For the given parametric family the method outlined
above gives the best possible result available from the
Cramer—Rao inequality. In the current instance a small
degree of precision is sacrificed to the convenient but not
logically necessary symmetrization at (2.7). This impre-
cision vanishes as n — %, so the asymptotic bound is the
best possible (using the Cramer-Rao inequality and the
given parametric subfamily, or any other subfamily asymp-
totically yielding the same Fisher information near 6 =
0).

2. MAIN RESULTS
21 Constraints

Fixa > 0, b > 0. Let §,, denote the class of density
functions satisfying
fx)=aVl|x| =4} 2.1
and
fx) = f(y)
X =y

sbVix|=4lyl=thx#y. (22)

LetX = Xl’ ..
and let o(x,, . . .
the risk of ¢ is

R, = R,(f, 0) = Ef(d(X,, ..., X)) = f(0))*

The value 3 in this formulation is an ad hoc choice, which
is convenient in the numerical cases to be examined in
Table 1. It could be replaced by any reasonable sequence
of constants k(n) such that k~'(n) = o(n'®) as n — o,
Doing so would not alter the asymptotic results to be pre-
sented, but could have some effect on the comparisons for
smaller values of n.

., X, be a random sample from f € 4,,,
, X,) € R be an estimator of f(0). Then

2.2 The Lower Bound

Given a, b let

-Z—(l—\/l—az/b) ifa®?<b

m =

= g if a> = b. (2.3)

Then let

ab 1/3
T =T, =min|b"? m, b/2a, 4.5 | —= 2.4
R
and
a—T,
é_é"_l—Tf,/b'

149

Now define the family of densities f, = f,, for |0| = T,
by

folx) = &(1 — (sgn 0)0?/b) + (sgn O)max(|0] — b|x|, 0)
if |x| < 3¢

= 0 otherwise. (2.5)

The definition of f,, including the restriction |0] < T,,
guarantees that f, € §,,. In fact, each f, satisfies the
inequalities in (2.1) and (2.2) for every x and y. Note that
fox) = €1-1pe126(x). In addition, fr(0) = a.

Remark 2.1. The restriction |§| = b'? is obviously
needed for (2.5) to define a density. This explains why the
term b'? appears in (2.4). When a> = b, min(b'?, m) =
b'2. If a> < b, then m is the smallest solution to

a—m m?
—l_mz/b(1+?)—m—0.

Thus if a*> < b and < —m the expression in (2.5) would
not be nonnegative when x = 0. This explains why the
term m appears in (2.4). It can now easily be seen that m
< a when > = b, and hence min(b'?, m) < a. For (2.5)
to define a density it is also necessary for the truncation
point 3¢ to satisfy (3¢) = (|6|/b). The term b/2a that ap-
pears in (2.4) guarantees this to be the case, since T <
min(b'?, b/a) implies that (a — T)/(1 — T?/b) < a, which
then implies that (3¢) > $a = |0|/b for |0| < T, < b/2a.
The factor ((ab)/n)!'? that appears in the last part of (2.4)
is a natural scaling factor, which can be derived from the
asymptotic theory described subsequently. The numerical
constant 4.5/3"6 that multiplies that factor has been chosen
by trial and error to yield good lower bounds in Table 1.
[Large choices make f,(0) small, which tends to decrease
the lower bound, but small values reduce the range, [ - T,
T,], of 6, which also tends to decrease the lower bound.]
As n— o, it is possible to replace this constant by some
c(n) = o with ¢(n) = o(n'?). Although this should slightly
improve the lower bound when n — o, it turns out that
it will not affect the first two decimals (.69) as given in
Table 1.

Remark 2.2. If T, is small compared with (4.5) - [ab/
nV/3]'3, then the method below should not be expected
to yield a good lower bound. In such a case it could be
considerably advantageous to begin with a family different
from (2.5), such as one with densities having the same
triangular shape as those in (2.5) but beginning from f,(x)
= (a/2)1(_aw4.a4(x). [Here one would need a = 3 for the
density to satisfy (2.2).]

Fix n. Let

10) = £, [(a% In f,<X)|t=e> ]

denote the Fisher information of the family {f,}. Given an
estimator J, € [0, =), based on the sample of size n, let
B =B, = Eyd,) — f4(0) denote the bias of d, for estimating
f()(O) Let

r=r, = sup{R,(fo, 6,) : 0 = 10| = T,}.
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The Cramer—Rao inequality yields

(1- 2 o))
ra e+ FO)

0<|6=T, (2.6

since

8 ) =1 - 2l

for 0 <|0| < T,. [No regularity conditions on , are needed
here since the family {f,} satisfies condition (A6) of Brown
and Gajek (1990).] Let

c(0) = (B©O) — p(-0))/2,
and let
J(6) = max(1(0), I(—6)), 0=60=T,.

Note that c(0) = 0 since f§ is continuous. Jensen’s in-
equality applied to (2.6) gives the result

2¢0) ?
(1 =+ (9))

nJ(0)

+ ), 0=60=T,

r=

@.7)

and ¢(0) = 0.

Theorem A.1 (see the Appendix) establishes that the
inequality (2.7) has a solution under the initial condition
c(0) = 0 iff (2.7) has a solution as an equality. As an
equality (2.7) can be rewritten as

c'(0) = VaI(0)(r — cX(0)) — 1 + 2¢0/b,
0=0=<T,;c0) =0. (28

This is an ordinary differential equation that can easily be
solved numerically to a high degree of accuracy to ascer-
tain whether a solution exists on the entire interval 0 < 0
=< T,. Itis also shown in Theorem A.1 (see the Appendix)
that the set of r for which solutions of (2.8) exist is a half
line.

Let r« = r«(a, b, n) denote the (numerically deter-
mined) lower bound for values of r such that a solution
to (2.8) exists. Then

r+(a, b, n) =< sup{R.(fo, 3,) : 0 = [0] = T,}

< sup{R,(f, d,) : f € Fp} 2.9

for all 6,. Hence r. is a lower bound for the minimax risk
over 5,,. For reasons that will appear in following para-
graphs it is convenient to table the normalized values

2

3 1/3
pu(a, b, n) = <a2_’;2) re(a, b, n).  (2.10)

Selected values of p. are presented in Table 1.

Joumal of the American Statistical Association, December 1990

2.3 The Asymptotic Lower Bound
Note that

sgn @ + 0(0)  if |x| < |6]/b

J
5@ fo(x)
= 0(0)

with the error term being uniform in x and &. Hence
oo (sgn 6)? 2/6|

10) = |
© —lous & b¢

Now let n — =, so that T, — 0 and ¢, — a. The Cramer—
Rao statement (2.6) becomes: For any ¢ > 0, there is an
n(e) such that

(1 + p'(6))

n <2|0|) 1+%¢

whenever n = n(g).
Change variables in (2.11) by letting

2\ 1/6
(5"
3,2\ V6 32\ 16
- ()29

3’12 1/3
and p(a, b) = lin”L inf (W) T,
Then (2.11) becomes

31+ d'(Q)P
2CI(1 + ¢)
3n?

1/6
0= |C| = (az_bz) T, — . (213)

This equation has the same general structure as (2.6) ex-
cept that it is now exactly symmetric in {.

Let p«(a, b, ©) be the minimal value for which the
equation

otherwise,

dx + o(0) = + o(0).

Tet &= + p¥0), 0=|0|=T,

(2.11)

2.12)

pla, b) = + d*({),

_ 31+ d'Q)

2

0 = | = 4.5 (say),
0. It follows that

p*(a’ b’ °°)

(2.14)
has a solution subject to d(0) =

p*(a, b’ oo) = p(a, b)
< lim inf sup{R,(f, ,) : f € 5,,} (2.15)

for all {d,}, since ¢ > 0 can be chosen arbitrarily small.

[As previously remarked, the constant 4.5 that appears
in (2.14) is arbitrary. Any larger choice is also reasonable,
but numerical investigations have shown that a larger choice
would not affect the two decimal places of the figures in
Table 1.]
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Table 1 exhibits the convergence of p«(a, b, n) — p«(a,
b, =) that is indicated by the above.

2.4 Kernel Estimators: Asymptotic Theory

The general form of a kernel estimator is J,(x;, . . . ,
x,) = n~' 27 k,(x), with [ k,(x) dx = 1.

Sacks and Ylv1saker (1981) established that, if {5.} is
any sequence of kernel estimators, then

n—x

a2b2 1/3
lim inf sup r*R,(, 5;) = [—3—] . (@.16)
Sa.b

Furthermore, if , is the kernel estimator sequence defined
by

ko(x) = o7 k(e %), (2.17)
where
k(x) = max(1 - [x[,0) and «;' = pn'® (2.18)
with
(b J |xlk(x) dx)?>
b2/3
B = = BGa)'3’ (2.19)
((al2) f K2(x) dx)'?
then
2b2 1/3
lim sup n*°R.(f, 6,) = [%] (2.20)

Hence this sequence of estimators is asymptotically min-
imax within the class of kernel estimators over 9, ,.

2.5 Kernel Estimators: Numerical Results

Table 1 describes the performance of a minor variant
of this estimator for various values of n, a, b. The constant
B in (2.19) is replaced by

b2/3
p' = max(f, 8/n'®) = max (W ,
since the smoothness condition (2.2) is valid only on [ -4
8] [Note that use of a value § < 8/n'"? yields a, = 1/Bn'?
> 4, which results in an unacceptably large bias if f(x) is
discontinuous at x = *+4.]
It is difficult to determme the precise values of sup{R,(f,
3) : f€ Sa6} With 8, as before. Hence the performance
of J, is described in Table 1 by

8/n“3) ., (221

32\ 113
p* = (a_2b—2> Sup{Rn(fO’ 67:) 0= Iol = Tn}’ (222)

where f, and T, are defined by (2.4) and (2.5). Note that
the lower bound p. previously described is actually a lower
bound for

3n2 1/3
(a_zl;i) sup{R.(fy, ) : 0 = 10| = T,}

for any estimator J. In that sense the values of p* are
directly comparable with those for this lower bound. The

151

values of p* are determined numerically. For the larger
values of 7 in Table 1 the supremum occurs when 6 = T,;
but this is not the case for values of n from 30 through
200 and certain choices of a, b.

The asymptotic expression given in (2.20) is actually an
upper bound for all n, as shown in the following lemma.

Lemma 2.1.
3n2 1/3
sup (a b2> R(f, 8) = 1. (2.23)
Proof. Note that for any kernel estimator
R(1,8) =+ fvar, ()} + (bias, ()
- %{ [ s ax
- ( f k(0)f (x) dx)z} + (biasy(k))?
= % { f ) f(x) dx}
+ bias; (k)Y (2.24)

It is easy to see that, for k, as in (2.17), (2.18), and
(2.21) and any f € 5,,,

(bias, (k) = (b f k()] x| dx)z,

and this value is actually attained whenever f(x) = a —
b|x| on |x| = 1/Bn'?. For the values a, b presented in Table
1 the choice f7, of (2.5) satisfies this condition (and, of
course, fr, € 5,,). The other term on the right of (2.24)
is obviously bounded for f € 4,, by

%sz(x)f(x) dx = % f kX (x)a dx.

Accordingly, for J as before,
32\ 13
3n2\"(a 2
= hd 2 2 —
= (asz) {nfk(x) dx + b (J x|k (x) dx) } 1

2.6 Description of the Table

Corresponding to each value of n, a, b in Table 1 are
two numbers. The lower number is the lower bound p«(a,
b, n) for the minimax risk over §,, multiplied by ((3n?)/
(a*b?))'3; see (2.9) and (2.10). The upper number is the
value p* that is ((3n%)/(a*b?))"” times the risk attained by
the asymptotically minimax kernel estimator at the least
favorable density of the form f, € 5,, (0 < |0| = T,). The
minimax value over all of ,, is less than or equal to 1, as
proven in Lemma 2.1. (This minimax value is probably
closer to p* than it is to the upper bound 1.)

The values in the table are the first two digits (un-
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rounded) of the decimal expansion. In this way, the entries
that appear for p. are indeed lower bounds for the nor-
malized minimax value.

The entries in this table provide a numerical basis for
the conclusion, on the one hand, that the lower bound ps
cannot be dramatically improved, and, on the other hand,
that the asymptotically minimax kernel estimators cannot
be dramatically improved. Note that the convergence of
the entries in Table 1 to their asymptotic value (n = «)
is fairly slow, but the ratios p*/p, are all less than 3, and
are mostly less than or equal to 2. Furthermore, for all (a,
b) in Table 1, p« = (3) - 1, where 1 is the upper bound
rigorously established in Lemma 2.1. [For values of (a, b)
for which A = T,[(nV/3)/(ab)]'® < 4.5 the values of p.
can be much smaller. For example, if (a, b) = (2, 3) and
n = 30, then p« = .04, whereas p* = .60. However, here
A = .46, and, as suggested in Remark 2.2, the Cramer-
Rao method should really be applied to a family other
than (2.5).]

APPENDIX: A DIFFERENTIAL INEQUALITY

Here is the main result of this section.

Theorem A.1. Letuv, : [0, T) — [0, ©) (i = 1, 2), with v,
bounded and measurable and v, continuous and nondecreasing.
Assume that v,(6) = v,(0), 6 € [0, T). Let both & : [0, T) —
[0, ©) and k : [0, T) — (0, ) be continuous and bounded, with
h(0) > 0 for & > 0. Suppose that ¢, : [0, T) = (-, ©) is
absolutely continuous and satisfies

qi(6) = h(6)(vi(0) — 43(6))"* — k(0). (A.1)

Then there is a continuously differentiable function g, : [0, T)
— (—o, ) such that g,(0) = ¢,(0), and

q:(0) = h(0)(v(6) — ¢3(6))" — k(6) (A2)

everywhere on [0, T). Furthermore, ¢,(6) = q,(6), 6 € [0, T).
7).

Remark. In the application at (2.7)-(2.8), h*(0) = nJ(6),
k(0) = 1 — 2£]0|/b, q,(6) = c(8), and

0 =uv(0) = h-%0)(k(B) + qi(0))* + g¥(6) < r.

Hence (A.1) is satisfied. Then let v,(6) = r, and the theorem
establishes the desired solubility of the equation

r = h7(0)(k(6) + q:(0)) + g(0).
[This equation is an alternate form of (A.2) and is the same as
(2.8) with ¢,(6) = ¢(6).]

Proof. Suppose that g, satisfies (A.2) on [0, 7), and suppose
that g3(r) < vy(z). Then for some ¢ > 0 the solution of (A.2)
exists on [0, 7 + ¢) by Picard’s theorem.

Now assume that, for some ¢ > 0, v,(0) > v,(0) + ¢, 6 € (0,
7), and g, satisfies (A.2) with g,(0) = g,(0). Then

4:(0) — qi(0) = h(O)[(A0) — 3(0))" — (v(0) — 4%(6))"]
for 6 € (0, 7). Hence q;(0) — q{(0) > 0 whenever ¢g3(6) — ¢3(0)
<¢, 6 € (0, 7). It follows that g,(8) > ¢,(0), 6 € (0, 7).

Continue to assume that v,(6) > v,() + ¢, 8 € (0, 1), and g,
satisfies (A.2) with ¢,(0) = ¢,(0). If 0 < ¢’ < 7, then lim,.
q.(8) = v¥¥(z") is impossible. [This equality would imply that
q5(0) < 0 for all § < 7' sufficiently near 7’ since v, is nonde-
creasing and k is positive and continuous. But then it would
follow that g,(t') < g,(0") = vi*(8') = v¥*¥(r") for some ' < t;
a contradiction.] It is also true that g,(t) = —v}?(7) is impossible.
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[That equality would imply that v,(6) — gi(f) < 0 for 6 <
sufficiently close to 7, a contradiction of (A.1).] It follows that
—v¥(1) = q,(1) < g,(7) < v¥¥(7). Hence the solution of (A.2)
exists on [0, 7 + ¢) by the first paragraph of the proof.

It follows that the conclusion of the theorem is valid if v,(0)

> v (6) + e.
Let v(6) = vy(6) + 1/i (i = 3, .. .). It follows that for each
i = 3,...asolution, g;, exists to

(A.3)
qh 3

q:(0) = h(0)(v(0) — qi(6))"* — k(6),
since v/(0) > v,(6) + ¢ on (0, T). Furthermore, ¢; = q; =
=i=j Letg, = lim.. q; = q,. Then

q/(0) = h(6)(v,(0) — q}(6))"* — k(0)
— h(6)(v(0) — q3(0))'"* — k(6).
Hence g/ (0) converges. In addition,
lg/(6)] = B = sup{h(6)(v(6) + %) + k(6) : 6 € [0, T]}.

It follows from the bounded convergence theorem that lim,..
q;(0) = g;(0) a.e., so g, satisfies (3.1(2)) a.e. on (0, T). The
right side of (A.2) is continuous. Hence g, has a continuous
version that satisfies (A.2) everywhere.

[Received January 1988. Revised April 1990.]
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